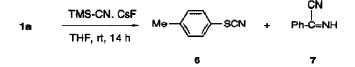

0040-4039(94)02083-3

ASYMMETRIC STRECKER SYNTHESIS USING ENANTIOPURE SULFINIMINES: A CONVENIENT SYNTHESIS OF α -AMINO ACIDS


Franklin A. Davis*, Rajarathnam E. Reddy, and Padma S. Portonovo Department of Chemistry, Drexel University, Philadelphia, PA 19104

Summary: Diethylaluminum cyanide adds stereoselectively to enantiopure sulfinimines 1 and 2 to give diastereometrically enriched α -amino nitriles 3 and 4 which are hydrolyzed in one step to α -amino acids 5 in >95% ee and good yields.

The occurrence of protein and non-protein α -amino acids in biological systems^{1a} and their exceptional utility as chiral synthons underlie the importance of improved methods for their synthesis in enantiopure form.^{1,2,3} This is particularly true for non-proteinogenic or "unnatural" amino acids as their incorporation into peptides can lead to improved bioactivity and stability. The asymmetric Strecker synthesis, reviewed by Williams² and Duthaler³, involves the addition of cyanide [CN] or its equivalent to a chiral imine. In order for this protocol to be generally useful, however, the chiral N-auxiliary needs to be readily available, provide high stereoinduction and be easily removed under nonepimerizing conditions. The 5-amino-4-phenyl-1,3-dioxanes and 1-amino-tetra-*O*-pivaloyl- β -D-glactopyranose auxiliaries, introduced by Weinges⁴ and Kunz⁵, respectively, afford useful levels of diastereoselection and crystallization often provides the pure diastereoisomers. More recently, de's of 7-80% have been reported for the α -phenylglycinol auxiliary, but yields were modest.⁶ In this context we describe a study of the asymmetric Strecker synthesis of α -amino acids using nonracemic sulfinimines 1 and 2 (Scheme). Sulfinimines are chiral ammonia imine synthons important in the asymmetric synthesis of amines,⁷ β -amino acids^{7b,8} and cis-aziridine 2-carboxylic acids.⁹

Under a variety of conditions cyanide (KCN, CuCN) failed to add to (\pm) -N-(benzylidene)-*p*toluenesulfinamide (1a) and trimethylsilyl cyanide (TMSCN), in the absence or presence of Lewis acids, gave no reaction or low yields (ca 9-20%) of α -amino nitrile **3a**. Trimethylsilyl cyanide had earlier been reported to be an effective reagent for the Strecker synthesis giving good diastereoselectivity and yields with Lewis acids.^{5,6} In these examples the Lewis acid was postulated as coordinating to the nitrogen lone pair, thus activating the C-N double bond for cyanide addition. Despite the fact that organometallic reagents (DIBAL-H, metal enolates, Grignard reagents) add to sulfinimines with high de the sulfinyl group is apparently not sufficiently activating for CN addition to occur.⁷⁻⁹ Unexpectedly, however, *p*-toluenethiocyanate (**6**)¹⁰ and 2-imino-2-phenylacetonitrile (**7**)¹¹ were isolated in 85 and 81% yield respectively, when (±)-**1a** was treated with 2.0 equivalent of TMSCN and cesium flu¢ride (CsF, 99.9%) in THF at rt for 14 h. The products were isolated by chromatography on silica gel after quenching with aqueous NH₄Cl.

Although the hydrocyanation of enones, ketones^{1,2} and β -ketosulfoxides¹³ with diethylaluminum cyanide (Et₂AlCN) has been extensively explored, there is only one report of its addition to imines. In this study the imines of α , β -unsaturated aldehydes were prepared to facilitate 1,4-addition because of the lower reactivity of the C-N double bond.¹⁴ Despite this observation we felt that Et₂AlCN could be an effective reagent for cyanide addition to sulfinimines because of its strong Lewis acidity. Our rational was that this reagent, on complexation at the sulfinyl oxygen in 1 and 2, will activate the imine for addition, and if intramolecular cyanide transfer occurs the de's could be quite high.

Typically, the appropriate sulfinimine 1 or 2 (1.0 mmol) was dissolved in 8 mL of solvent (ether and/orTHF, see Table), 1.5 equivalents of Et₂AlCN (1.0 M soln. in toluene) added at -78°C and the reaction mixture warmed to the appropriate temperature. After completion of the reaction (2-4 h), as determined by TLC, the mixture was quenched with sat. NH4Cl. The major diastereomeric α -amino nitriles 3 and 4 were isolated in high yield by chromatography on silica gel [20% EtOAc-*n*-pentane (3a), 35% EtOAc-*n*-pentane (4a); 2% acetone-CHCl3 (3b); acetone:CH₂Cl₂:*n*-hexane in 5:25:70 ratio (3c); ether: CHCl3: *n*-pentane in 1:5:4 ratio (4b-c)]. In general the α -amino nitriles having the N-2-methoxy-1-naphthylsulfinyl auxiliary, 4, proved to be the easiest to separate. Indeed (S_S,S)-4a was isolated diastereomerically pure (>98% de) in 48% yield in one crystallization from *n*-hexane/EtOAc. Enantiopure sulfinimines 1¹⁵ and 2¹⁶ were prepared as previously described.

Gentle refluxing of the appropriate pure isolated diastereomeric α -amino nitriles 3 and 4¹⁸ in 6 N HCl for 6-8 h followed by washing with ethyl ether (3 x 10 mL) and passing the aqueous solution through a Dowex 50X8-100 ion exchange resin (elution with 1.5 N NH₄OH) gave (*S*)-(+)-phenylghycine (5a),¹⁹ (*S*)-(+)-norvaline (5b)²⁰ and (*S*)-(+)-leucine (5c)²¹ in >95% ee and 71-81%

Entry	Sulfinimine (R=)	Solvent /Temp. (ºC)		litri les 3 and 4 [(<i>S</i> S, <i>S</i>)/(<i>S</i> S, <i>R</i>)] ^b		-Amino Acid 5 eld ^c %ee ^d (Config.)
1 2 3 4	(±)-1a (Ph) (<i>S</i>)-(+)-1a (Ph)	Toluene/rt CH2Cl2/0 THF/0 to rt Et2O/-78 to 0	<10% <15% 35 72	[40:60] [59:41] [70:30]	71	>95 (<i>S</i>)
5	(S)-(+)-1b (<i>n</i> -Pr)	Et ₂ O/78 to -15	67	[69:31]	79	>95 (<i>S</i>)
6	(<i>S</i>)-(+)-1c (<i>i</i> -Bu)	Et ₂ O/-78 to -15	62	[71:29]	67	>95 (<i>S</i>)
7	(<i>S</i>)-(+)-2a (Ph)	Et ₂ O-THF/-78 to -10) 78	[80:20]	81	>95 (<i>S</i>)
8	(<i>S</i>)-(+)- 2b (<i>n</i> -Pr)	THF/-78 to -40	75	[8 3:17]	73	>95 (<i>S</i>)
9	(<i>S</i>)-(+)- 2c (<i>i</i> -Bu)	THF/-78 to -40	72	[83:17]	71	>95 (<i>S</i>)°
10	(<i>R</i>)-(-)-2c (<i>i</i> -Bu)	THF/-78 to -40	78	[17:83] [†]	75	>95 (<i>R</i>) ^e

Table: Stereoselective addition of Diethylaluminum Cyanide to Sulfinimines 1 and 2

a) Isolated yields of diastereomeric mixtures. b) Determined by ¹H NMR. c) Isolated yield of 5 from the major diastereoisomer. d) Ee's and the configuration were determined by comparison of their optical rotations with authentic samples. e) Ee's determined on the methyl ester using (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol. f) The configuration is (R_S , S/R_S , R).

isolated yields (Table). The ee's and absolute configuration were determined by comparison with authentic samples. Significantly, the conditions for concomitant removal of N-sulfinyl auxiliary and nitrile hydrolysis are exceptionally mild, in comparison with other procedures,⁴⁻⁶ affording 5 without racemization even for the epimerization sensitive phenylglycine (5a).

Interestingly, the highest yields and de's were found in diethyl ether and/or THF (compare entries 1-3 with others) despite the report that Et₂AICN is more reactive in nonbasic solvents such as toluene.¹² The product stereochemistry, determined by chemical correlation (see above) is consistent with association of Et₂AICN at the sulfinyl oxygen of the sulfinimine to form a tetracoordinated species followed by intramolecular transfer of cyanide through the usual sixmembered chair-like transition state.^{8a,9a} However, the reasons for the modest diastereoselectivity (40-60% de) and the somewhat higher de's for 2 (compare entries 4-6 with 7-10) are not readily apparent and under active investigation.

In summary, the facile addition of Et₂AlCN to readily available, enantiopure sulfinimines 1 and 2 represents new and convenient methodology for the asymmetric Strecker synthesis of α -amino acids 5, in both epimeric forms (see entries 9 and 10).

Acknowledgments: This work was supported by grants from the National Science Foundation and the National Institutes of Health (GM34014).

REFERENCES AND NOTES

- For reviews see a) Barrett, G. C., Ed.; "Chemistry and Biochemistry of the Amino Acids," Chapman and Hall: London 1985. b) Greenstein, J. P.; Wintz, M. Chemistry of the Amino Acids," Robert E. Krieger: FL,1984; Vols. 1-3. c) Coppala, G. M.; Schuster, H. F. "Asymmetric Synthesis: Construction of Chiral Molecules using Amino acids," Wiley, New York, 1987. d) Hanessian, S. "Total Synthesis of natural Products : The Chiron approach," Pergamon Press: Oxford 1983. e) *Tetrahedron* (Symposia-in-Print; O'Donnell, M. J. Ed.) 1988, 44, 5253. f) Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149.
- 2. Williams, R. M. "Synthesis of Optically Active α-Amino Acids," Pergamon Press: Oxford 1989.
- 3. Duthaler, O. R. Tetrahedron 1994, 50, 1539.
- 4. Weinges, K.; Brachmann, H.; Stahnecker, P.; Rodewald, H.; Nixdorf, M.; Imgartinger, H. Liebigs Ann. Chem. 1985, 556.
- 5. Kunz, H.; Rück, C. Angew. Chem., Int. Ed. Engl. 1993, 32, 336 and references cited therein.
- 6. Chakraborty, T. K.; Reddy, G. V.; Hussain, K. A. Tetrahedron Lett. 1991, 32, 7597.
- 7. a) Annunziata, R.; Cinquini, M.; Cozzi, F. *J. C. S. Perkin Trans I*, **1982**, 339. b) Hua, D. H.; Miao, S. W.; Chen, J. S.; Iguchi, S. *J. Org. Chem.* **1991**, *56*, 4.
- a) Davis, F. A.; Reddy, R. T.; Reddy, R. E. J. Org. Chem. 1992, 57, 6337. b) Jiang, J.;
 Schumacher, K. K.; Joullie, M. M.; Davis, F. A.; Reddy, R. E. Tetrahedron Lett, 1994, 35, 2121. c) Davis, F. A.; Reddy, R. E. Tetrahedron: Asymmetry 1994, 5, 955.
- 9. a) Davis, F. A.; Zhou, P.; Reddy, G. V. J. Org. Chem. 1994, 59, 3243. b) Davis, F. A.; Zhou, P. Tetrahedron Lett. in press.
- 10. Kagabu, S.; Maehara, M.; Sawahara, K.; Saito, K. J. Chem. Soc. Chem. Commun., 1988, 1485.
- a) Smith, P. A. S.; Friar, J. J.; Rosemann, W.; Watson, A. C. *J. Org. Chem.* 1990, *55*, 1351.
 b) Padwa, A.; Koehler, K. F. *J. Chem. Soc. Chem. Commun.*, 1986, 789.
 For a review see: Nagata, W. in "Proceedings of the Robert A. Welch Foundation
- For a review see: Nagata, W. in "Proceedings of the Robert A. Weich Foundation Conferences on Chemical Research XVII, Organic -Inorganic Reagents in Synthetic Chemistry," Houston, 1973, 185. Nagata, W, Yoshika, M.; Hirai, S. J. Am. Chem. Soc. 1972, 94, 4635. Nagata, W, Yoshika, M.; Murakami, M. J. Am. Chem. Soc. 1972, 94, 4654.
- 13. Ruano, J. L. G.; Martin, A. M.; Rodriguez, J. H. J. Org. Chem. 1992, 57, 7235.
- 14. Nagata, W, Yoshika, M.; Okumura, T.; Murakarni, M. J. Chem. Soc. C 1970, 2355.
- 15. Davis, F. A., Reddy, R. E. Szewczyk, J. M.; Portonovo, P. Tetrahedron Lett. 1993, 34, 6229.
- Sulfinimines (S)-(+); 2 a-c and (R)-(-)-2 c were prepared from benzaldehyde, nbutyraldehyde and isovelaraldehyde respectively according to reference 15 using (-)-(S)menthyl-2-methoxy-1-naphthalenesulfinate¹⁷ and (+)-(R)-menthyl-2-methoxy-1-naphthalenesulfinate, mp 107-109°C; [α]p²⁰ + 187.24 (c, 1.3 CHCl₃)). Details will be described elsewhere.
- 17. Pyne, S. G.; Hajipour, A. R.; Prabakaran, K. Tetrahedron Lett. 1994, 35, 645.
- 18. α-Amino nitriles **3** and 4 has the following properties: (S_S, S) -**3a**, 123-124 °C; $[\alpha]_D^{20}$ +174.1° (c, 1.19 CHCl₃); (S_S, S) -**3b**, gum, $[\alpha]_D^{20}$ +43.7° (c, 1.1 CHCl₃); (S_S, S) -**3c**, mp 69-70 °C; $[\alpha]_D^{20}$ +46.3 (c, 3.8 CHCl₃); (S_S, S) -**4a**, mp; 134-135 °C; $[\alpha]_D^{20}$ +103.3° (c, 0.6 acetone); (S_S, S) -**4b**, mp 82-83 °C, $[\alpha]_D^{20}$ +51.3° (c, 1.8 CHCl₃); (S_S, S) -**4c**, mp; 121-122°C; $[\alpha]_D^{20}$ +53.9 °, (c, 2.7 CHCl₃); (S_S, R) -**4c**, mp 122-123 °C; $[\alpha]_D^{20}$ -51.5° (c, 1.7 CHCl₃).
- 19. Clark, J. C.; Phillipps, G. H.; Steer, M. R.; Stephenson, L.; Cooksey, A. R *J. Chem. Soc. Perkin Trans* **1 1976**, 471. (*S*)-[α]_D²⁰ +155° (c, 1.004 N HCl).
- 20. Greenstein, J. P.; Gilbert, J. B.; Fodor, P. J. *J. Biol. Chem.* **1950**, *182*, 451. (*S*)-[α]_D²⁰ +24.8° (6.0N HCl).
- 21. DeWitt, H. D.; Ingersoll, A. W. *J. Am. Chem. Soc.* **1951**, *73*, 3359. (*S*)-[α]_D²⁵ +15.3° (5.99N HCl).

(Received in USA 2 September 1994; revised 17 October 1994; accepted 18 October 1994)